Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
JMIR Med Inform ; 12: e53400, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38513229

ABSTRACT

BACKGROUND: Predicting the bed occupancy rate (BOR) is essential for efficient hospital resource management, long-term budget planning, and patient care planning. Although macro-level BOR prediction for the entire hospital is crucial, predicting occupancy at a detailed level, such as specific wards and rooms, is more practical and useful for hospital scheduling. OBJECTIVE: The aim of this study was to develop a web-based support tool that allows hospital administrators to grasp the BOR for each ward and room according to different time periods. METHODS: We trained time-series models based on long short-term memory (LSTM) using individual bed data aggregated hourly each day to predict the BOR for each ward and room in the hospital. Ward training involved 2 models with 7- and 30-day time windows, and room training involved models with 3- and 7-day time windows for shorter-term planning. To further improve prediction performance, we added 2 models trained by concatenating dynamic data with static data representing room-specific details. RESULTS: We confirmed the results of a total of 12 models using bidirectional long short-term memory (Bi-LSTM) and LSTM, and the model based on Bi-LSTM showed better performance. The ward-level prediction model had a mean absolute error (MAE) of 0.067, mean square error (MSE) of 0.009, root mean square error (RMSE) of 0.094, and R2 score of 0.544. Among the room-level prediction models, the model that combined static data exhibited superior performance, with a MAE of 0.129, MSE of 0.050, RMSE of 0.227, and R2 score of 0.600. Model results can be displayed on an electronic dashboard for easy access via the web. CONCLUSIONS: We have proposed predictive BOR models for individual wards and rooms that demonstrate high performance. The results can be visualized through a web-based dashboard, aiding hospital administrators in bed operation planning. This contributes to resource optimization and the reduction of hospital resource use.

2.
Heliyon ; 10(2): e24620, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304832

ABSTRACT

Background and Objective: Although interest in predicting drug-drug interactions is growing, many predictions are not verified by real-world data. This study aimed to confirm whether predicted polypharmacy side effects using public data also occur in data from actual patients. Methods: We utilized a deep learning-based polypharmacy side effects prediction model to identify cefpodoxime-chlorpheniramine-lung edema combination with a high prediction score and a significant patient population. The retrospective study analyzed patients over 18 years old who were admitted to the Asan medical center between January 2000 and December 2020 and took cefpodoxime or chlorpheniramine orally. The three groups, cefpodoxime-treated, chlorpheniramine-treated, and cefpodoxime & chlorpheniramine-treated were compared using inverse probability of treatment weighting (IPTW) to balance them. Differences between the three groups were analyzed using the Kaplan-Meier method and Cox proportional hazards model. Results: The study population comprised 54,043 patients with a history of taking cefpodoxime, 203,897 patients with a history of taking chlorpheniramine, and 1,628 patients with a history of taking cefpodoxime and chlorpheniramine simultaneously. After adjustment, the 1-year cumulative incidence of lung edema in the patient group that took cefpodoxime and chlorpheniramine simultaneously was significantly higher than in the patient groups that took cefpodoxime or chlorpheniramine only (p=0.001). Patients taking cefpodoxime and chlorpheniramine together had an increased risk of lung edema compared to those taking cefpodoxime alone [hazard ratio (HR) 2.10, 95% CI 1.26-3.52, p<0.005] and those taking chlorpheniramine alone, which also increased the risk of lung edema (HR 1.64, 95% CI 0.99-2.69, p=0.05). Conclusions: Validation of polypharmacy side effect predictions with real-world data can aid patient and clinician decision-making before conducting randomized controlled trials. Simultaneous use of cefpodoxime and chlorpheniramine was associated with a higher long-term risk of lung edema compared to the use of cefpodoxime or chlorpheniramine alone.

4.
Comput Biol Med ; 168: 107738, 2024 01.
Article in English | MEDLINE | ID: mdl-37995536

ABSTRACT

Electronic medical records(EMR) have considerable potential to advance healthcare technologies, including medical AI. Nevertheless, due to the privacy issues associated with the sharing of patient's personal information, it is difficult to sufficiently utilize them. Generative models based on deep learning can solve this problem by creating synthetic data similar to real patient data. However, the data used for training these deep learning models run into the risk of getting leaked because of malicious attacks. This means that traditional deep learning-based generative models cannot completely solve the privacy issues. Therefore, we suggested a method to prevent the leakage of training data by protecting the model from malicious attacks using local differential privacy(LDP). Our method was evaluated in terms of utility and privacy. Experimental results demonstrated that the proposed method can generate medical data with reasonable performance while protecting training data from malicious attacks.


Subject(s)
Electronic Health Records , Privacy , Humans , Health Facilities
5.
Health Care Manag Sci ; 27(1): 114-129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37921927

ABSTRACT

Overcrowding of emergency departments is a global concern, leading to numerous negative consequences. This study aimed to develop a useful and inexpensive tool derived from electronic medical records that supports clinical decision-making and can be easily utilized by emergency department physicians. We presented machine learning models that predicted the likelihood of hospitalizations within 24 hours and estimated waiting times. Moreover, we revealed the enhanced performance of these machine learning models compared to existing models by incorporating unstructured text data. Among several evaluated models, the extreme gradient boosting model that incorporated text data yielded the best performance. This model achieved an area under the receiver operating characteristic curve score of 0.922 and an area under the precision-recall curve score of 0.687. The mean absolute error revealed a difference of approximately 3 hours. Using this model, we classified the probability of patients not being admitted within 24 hours as Low, Medium, or High and identified important variables influencing this classification through explainable artificial intelligence. The model results are readily displayed on an electronic dashboard to support the decision-making of emergency department physicians and alleviate overcrowding, thereby resulting in socioeconomic benefits for medical facilities.


Subject(s)
Artificial Intelligence , Waiting Lists , Humans , Hospitalization , Emergency Service, Hospital , Machine Learning , Retrospective Studies
6.
Sci Rep ; 13(1): 22461, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38105280

ABSTRACT

As warfarin has a narrow therapeutic window and obvious response variability among individuals, it is difficult to rapidly determine personalized warfarin dosage. Adverse drug events(ADE) resulting from warfarin overdose can be critical, so that typically physicians adjust the warfarin dosage through the INR monitoring twice a week when starting warfarin. Our study aimed to develop machine learning (ML) models that predicts the discharge dosage of warfarin as the initial warfarin dosage using clinical data derived from electronic medical records within 2 days of hospitalization. During this retrospective study, adult patients who were prescribed warfarin at Asan Medical Center (AMC) between January 1, 2018, and October 31, 2020, were recruited as a model development cohort (n = 3168). Additionally, we created an external validation dataset (n = 891) from a Medical Information Mart for Intensive Care III (MIMIC-III). Variables for a model prediction were selected based on the clinical rationale that turned out to be associated with warfarin dosage, such as bleeding. The discharge dosage of warfarin was used the study outcome, because we assumed that patients achieved target INR at discharge. In this study, four ML models that predicted the warfarin discharge dosage were developed. We evaluated the model performance using the mean absolute error (MAE) and prediction accuracy. Finally, we compared the accuracy of the predictions of our models and the predictions of physicians for 40 data point to verify a clinical relevance of the models. The MAEs obtained using the internal validation set were as follows: XGBoost, 0.9; artificial neural network, 0.9; random forest, 1.0; linear regression, 1.0; and physicians, 1.3. As a result, our models had better prediction accuracy than the physicians, who have difficulty determining the warfarin discharge dosage using clinical information obtained within 2 days of hospitalization. We not only conducted the internal validation but also external validation. In conclusion, our ML model could help physicians predict the warfarin discharge dosage as the initial warfarin dosage from Korean population. However, conducting a successfully external validation in a further work is required for the application of the models.


Subject(s)
Patient Discharge , Warfarin , Adult , Humans , Warfarin/adverse effects , Retrospective Studies , Inpatients , Anticoagulants/adverse effects , Machine Learning
7.
Sci Rep ; 12(1): 21152, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477457

ABSTRACT

Graph representation learning is a method for introducing how to effectively construct and learn patient embeddings using electronic medical records. Adapting the integration will support and advance the previous methods to predict the prognosis of patients in network models. This study aims to address the challenge of implementing a complex and highly heterogeneous dataset, including the following: (1) demonstrating how to build a multi-attributed and multi-relational graph model (2) and applying a downstream disease prediction task of a patient's prognosis using the HinSAGE algorithm. We present a bipartite graph schema and a graph database construction in detail. The first constructed graph database illustrates a query of a predictive network that provides analytical insights using a graph representation of a patient's journey. Moreover, we demonstrate an alternative bipartite model where we apply the model to the HinSAGE to perform the link prediction task for predicting the event occurrence. Consequently, the performance evaluation indicated that our heterogeneous graph model was successfully predicted as a baseline model. Overall, our graph database successfully demonstrated efficient real-time query performance and showed HinSAGE implementation to predict cardiovascular disease event outcomes on supervised link prediction learning.


Subject(s)
Electronic Health Records , Humans
8.
Comput Methods Programs Biomed ; 221: 106866, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35594580

ABSTRACT

BACKGROUND AND OBJECTIVE: With the advent of bioinformatics, biological databases have been constructed to computerize data. Biological systems can be described as interactions and relationships between elements constituting the systems, and they are organized in various biomedical open databases. These open databases have been used in approaches to predict functional interactions such as protein-protein interactions (PPI), drug-drug interactions (DDI) and disease-disease relationships (DDR). However, just combining interaction data has limited effectiveness in predicting the complex relationships occurring in a whole context. Each contributing source contains information on each element in a specific field of knowledge but there is a lack of inter-disciplinary insight in combining them. METHODS: In this study, we propose the RWD Integrated platform for Discovering Associations in Biomedical research (RIDAB) to predict interactions between biomedical entities. RIDAB is established as a graph network to construct a platform that predicts the interactions of target entities. Biomedical open database is combined with EMRs each representing a biomedical network and a real-world data. To integrate databases from different domains to build the platform, mapping of the vocabularies was required. In addition, the appropriate structure of the network and the graph embedding method to be used were needed to be selected to fit the tasks. RESULTS: The feasibility of the platform was evaluated using node similarity and link prediction for drug repositioning task, a commonly used task for biomedical network. In addition, we compared the US Food and Drug Administration (FDA)-approved repositioned drugs with the predicted result. By integrating EMR database with biomedical networks, the platform showed increased f1 score in predicting repositioned drugs, from 45.62% to 57.26%, compared to platforms based on biomedical networks alone. CONCLUSIONS: This study demonstrates that the elements of biomedical research findings can be reflected by integrating EMR data with open-source biomedical networks. In addition, showed the feasibility of using the established platform to represent the integration of biomedical networks and reflected the relationship between real world networks.


Subject(s)
Biomedical Research , Electronic Health Records , Databases, Factual
9.
JMIR Med Inform ; 9(11): e32662, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34787584

ABSTRACT

BACKGROUND: Effective resource management in hospitals can improve the quality of medical services by reducing labor-intensive burdens on staff, decreasing inpatient waiting time, and securing the optimal treatment time. The use of hospital processes requires effective bed management; a stay in the hospital that is longer than the optimal treatment time hinders bed management. Therefore, predicting a patient's hospitalization period may support the making of judicious decisions regarding bed management. OBJECTIVE: First, this study aims to develop a machine learning (ML)-based predictive model for predicting the discharge probability of inpatients with cardiovascular diseases (CVDs). Second, we aim to assess the outcome of the predictive model and explain the primary risk factors of inpatients for patient-specific care. Finally, we aim to evaluate whether our ML-based predictive model helps manage bed scheduling efficiently and detects long-term inpatients in advance to improve the use of hospital processes and enhance the quality of medical services. METHODS: We set up the cohort criteria and extracted the data from CardioNet, a manually curated database that specializes in CVDs. We processed the data to create a suitable data set by reindexing the date-index, integrating the present features with past features from the previous 3 years, and imputing missing values. Subsequently, we trained the ML-based predictive models and evaluated them to find an elaborate model. Finally, we predicted the discharge probability within 3 days and explained the outcomes of the model by identifying, quantifying, and visualizing its features. RESULTS: We experimented with 5 ML-based models using 5 cross-validations. Extreme gradient boosting, which was selected as the final model, accomplished an average area under the receiver operating characteristic curve score that was 0.865 higher than that of the other models (ie, logistic regression, random forest, support vector machine, and multilayer perceptron). Furthermore, we performed feature reduction, represented the feature importance, and assessed prediction outcomes. One of the outcomes, the individual explainer, provides a discharge score during hospitalization and a daily feature influence score to the medical team and patients. Finally, we visualized simulated bed management to use the outcomes. CONCLUSIONS: In this study, we propose an individual explainer based on an ML-based predictive model, which provides the discharge probability and relative contributions of individual features. Our model can assist medical teams and patients in identifying individual and common risk factors in CVDs and can support hospital administrators in improving the management of hospital beds and other resources.

10.
JMIR Public Health Surveill ; 7(10): e30824, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34643539

ABSTRACT

BACKGROUND: When using machine learning in the real world, the missing value problem is the first problem encountered. Methods to impute this missing value include statistical methods such as mean, expectation-maximization, and multiple imputations by chained equations (MICE) as well as machine learning methods such as multilayer perceptron, k-nearest neighbor, and decision tree. OBJECTIVE: The objective of this study was to impute numeric medical data such as physical data and laboratory data. We aimed to effectively impute data using a progressive method called self-training in the medical field where training data are scarce. METHODS: In this paper, we propose a self-training method that gradually increases the available data. Models trained with complete data predict the missing values in incomplete data. Among the incomplete data, the data in which the missing value is validly predicted are incorporated into the complete data. Using the predicted value as the actual value is called pseudolabeling. This process is repeated until the condition is satisfied. The most important part of this process is how to evaluate the accuracy of pseudolabels. They can be evaluated by observing the effect of the pseudolabeled data on the performance of the model. RESULTS: In self-training using random forest (RF), mean squared error was up to 12% lower than pure RF, and the Pearson correlation coefficient was 0.1% higher. This difference was confirmed statistically. In the Friedman test performed on MICE and RF, self-training showed a P value between .003 and .02. A Wilcoxon signed-rank test performed on the mean imputation showed the lowest possible P value, 3.05e-5, in all situations. CONCLUSIONS: Self-training showed significant results in comparing the predicted values and actual values, but it needs to be verified in an actual machine learning system. And self-training has the potential to improve performance according to the pseudolabel evaluation method, which will be the main subject of our future research.


Subject(s)
Algorithms , Electronic Health Records , Humans , Machine Learning , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...